
CE384: Database Design
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

Introduction to
NoSQL Databases

CE384: Database Design Maryam Ramezani 2

Parallel Databases and Data Stores

◼ Relational Databases – mainstay of business
◼ Web-based applications caused spikes

❑ Especially true for public-facing e-Commerce sites

◼ Many application servers, one database
❑ Easy to parallelize application servers to 1000s of servers, harder to

parallelize databases to same scale
❑ First solution: memcache or other caching mechanisms to reduce

database access

CE384: Database Design Maryam Ramezani 3

Scaling Up

◼ What if the dataset is huge, and very high number of
transactions per second

◼ Use multiple servers to host database
◼ Parallel databases have been around for a while

❑ But expensive, and designed for decision support not OLTP

CE384: Database Design Maryam Ramezani 4

Scaling RDBMS – Master/Slave

◼ Master-Slave
❑ All writes are written to the master. All reads performed

against the replicated slave databases
❑ Good for mostly read, very few update applications
❑ Critical reads may be incorrect as writes may not have

been propagated down
❑ Large data sets can pose problems as master needs to

duplicate data to slaves

CE384: Database Design Maryam Ramezani 5

Scaling RDBMS - Partitioning

◼ Partitioning
❑ Divide the database across many machines

◼ E.g. hash or range partitioning
◼ Handled transparently by parallel databases

❑ but they are expensive
◼ “Sharding”

❑ Divide data amongst many cheap databases (MySQL/PostgreSQL)
❑ Manage parallel access in the application
❑ Scales well for both reads and writes
❑ Not transparent, application needs to be partition-aware

CE384: Database Design Maryam Ramezani 6

CE384: Database Design Maryam Ramezani

3V

Volume Velocity Variety

7

◼ Stands for Not Only SQL
◼ Class of non-relational data storage systems

❑ E.g. BigTable, Dynamo, PNUTS/Sherpa, ..
◼ Usually do not require a fixed table schema nor do they use

the concept of joins
◼ All NoSQL offerings relax one or more of the ACID properties

(will talk about the CAP theorem)
◼ Not a backlash/rebellion against RDBMS
◼ SQL is a rich query language that cannot be rivaled by the

current list of NoSQL offerings

CE384: Database Design Maryam Ramezani 8

Why Now?

◼ Explosion of social media sites (Facebook, Twitter) with large data
needs

◼ Explosion of storage needs in large web sites such as Google,
Yahoo
❑ Much of the data is not files

◼ Rise of cloud-based solutions such as Amazon S3 (simple storage
solution)

◼ Shift to dynamically-typed data with frequent schema changes
◼ Open-source community

CE384: Database Design Maryam Ramezani 9

◼ Distributed key-value data storage systems allow key-value pairs to
be stored (and retrieved on key) in a massively parallel system
❑ E.g. Google BigTable, Yahoo! Sherpa/PNUTS, Amazon Dynamo, ..

◼ Partitioning, high availability etc completely transparent to
application

◼ Sharding systems and key-value stores don’t support many relational
features
❑ No join operations (except within partition)
❑ No referential integrity constraints across partitions
❑ etc.

CE384: Database Design Maryam Ramezani 10

◼ Basic API access:
❑ get(key) -- Extract the value given a key
❑ put(key, value) -- Create or update the value given

its key
❑ delete(key) -- Remove the key and its associated

value
❑ execute(key, operation, parameters) -- Invoke an

operation to the value (given its key) which is a
special data structure (e.g. List, Set, Map etc).

CE384: Database Design Maryam Ramezani 11

ColumnFamily: Rockets

Key Value

1

2

3

Name Value

toon
inventoryQty
brakes

Rocket-Powered Roller Skates
Ready, Set, Zoom
5
false

name

Name Value

toon
inventoryQty
brakes

Little Giant Do-It-Yourself Rocket-Sled Kit
Beep Prepared
4
false

Name Value

toon
inventoryQty
wheels

Acme Jet Propelled Unicycle

Hot Rod and Reel
1
1

name

name

CE384: Database Design Maryam Ramezani 12

CE384: Database Design Maryam Ramezani 13

CAP Theorem

◼ Three properties of a system
❑ Consistency (all copies have same value)
❑ Availability (system can run even if parts have failed)
❑ Partitions (network can break into two or more parts, each with

active systems that can’t talk to other parts)
◼ Brewer ’s CAP “Theorem”: You can have at most two of these

three properties for any system
◼ Very large systems will partition at some point

❑ ➔Choose one of consistency or availability
❑ Traditional database choose consistency
❑ Most Web applications choose availability

◼ Except for specific parts such as order processing

CE384: Database Design Maryam Ramezani 14

Availability

◼ Traditionally, thought of as the server/process available
five 9’s (99.999 %).

◼ However, for large node system, at almost any point in time
there’s a good chance that a node is either down or there is
a network disruption among the nodes.
❑ Want a system that is resilient in the face of network

disruption

CE384: Database Design Maryam Ramezani 15

Eventual Consistency

◼ When no updates occur for a long period of time, eventually all updates will
propagate through the system and all the nodes will be consistent

◼ For a given accepted update and a given node, eventually either the update
reaches the node or the node is removed from service

◼ Known as BASE (Basically Available, Soft state, Eventual consistency), as
opposed to ACID
❑ Soft state: copies of a data item may be inconsistent
❑ Eventually Consistent – copies becomes consistent at some later time if there

are no more updates to that data item

CE384: Database Design Maryam Ramezani 16

◼ Cheap, easy to implement (open source)
◼ Data are replicated to multiple nodes (therefore

identical and fault-tolerant) and can be partitioned
❑ When data is written, the latest version is on at least one node

and then replicated to other nodes
❑ Down nodes easily replaced
❑ No single point of failure

◼ Easy to distribute
◼ Don't require a schema

CE384: Database Design Maryam Ramezani 17

What does NoSQL Not Provide?

◼ Joins
◼ Group by
❑ But PNUTS provides interesting materialized view

approach to joins/aggregation.
◼ ACID transactions
◼ SQL
◼ Integration with applications that are based on SQL

CE384: Database Design Maryam Ramezani 18

◼ NoSQL Data storage systems makes sense for applications that
need to deal with very very large semi-structured data
❑ Log Analysis
❑ Social Networking Feeds

◼ Most of us work on organizational databases, which are not that
large and have low update/query rates
❑ regular relational databases are THE correct solution for such

applications

CE384: Database Design Maryam Ramezani 19

CE384: Database Design Maryam Ramezani 20

 Simple hash based partitioning
 Range based partitioning :
 Consistent Hashing

CE384: Database Design Maryam Ramezani 21

 General procedure for hash-based partitioning is for a given data element (a row
or anything that is taken as an entity) , come up with a key and applying a hash
function to map it to a number. Then do a modulo on hash function value and the
number of servers. The resulting value would be in the range 1 to the number of
servers added.

 (hash(key)%number of servers) = a number(in the range of servers)

 Problem: Major problem with this simple hash-based partitioning is that when
nodes come down, the data on that node needs to be moved around to other
nodes in the cluster. Also, the count of nodes changes when nodes scale up or
scale down and hence the re mapping of all keys is required, which involves huge
data movement. Needless to say, it is most expensive operation to handle without
making availability trait to suffer.

CE384: Database Design Maryam Ramezani 22

 In this partitioning scheme, certain ranges are allocated to nodes,
and if hash or any predefined function on the chosen key falls into
a certain range, then corresponding server stores the data.

 Problem: In this partitioning technique there is possibility of data
being skewed on some nodes vs the others. Again, the success of
this depends on how well the function to decide the range is
selected.It also exhibits the need to rebalance or re distribute data
in the cluster in case of adding nodes and decommissioning
nodes.

CE384: Database Design Maryam Ramezani 23

CE384: Database Design Maryam Ramezani 24

CE384: Database Design Maryam Ramezani 25

CE384: Database Design Maryam Ramezani 26

CE384: Database Design Maryam Ramezani

 if server 5 is added, only keys
between server 4 and server 5
are remapped. In this ex: only
key1 is remapped from server 1
to server5

27

CE384: Database Design Maryam Ramezani

 if server 3 is removed, all the
keys mapped to server3 will be
remapped to next server in
ring. In this ex: key4 will be
remapped to server4

28

 Above approach works perfectly under the assumption that
partition size is uniform and keys are uniformly distributed onto
the servers. But in real world -
▪ It is not possible to have uniform size of partitions on the ring. A partition is

the hash space between two adjacent servers. It is possible to have very
small/ very large partition between two servers.

▪ It is possible to have non-uniform distribution of keys onto the ring. Nearly
all the keys could be mapped to one server, while others don’t get much
keys.

 This problem is solved by virtual nodes.

CE384: Database Design Maryam Ramezani 29

 Virtual Nodes also referred as
virtual replicas, is an extension to
consistent hashing that aims to
improve data distribution
uniformly on all servers. Instead
of mapping each physical node
to a single point on ring, each
server is represented by multiple
virtual nodes on the ring. This
results in more even distribution
of keys across the nodes.

CE384: Database Design Maryam Ramezani 30

CE384: Database Design Maryam Ramezani 31

 Minimized keys are re-distributed when servers are
added or removed

 Easier to scale horizontally since only k/n keys would
be affected.

 Mitigate hotspot problem. Chances of excessively
accessed keys arriving on same virtual node is very
low.

CE384: Database Design Maryam Ramezani 32

CE384: Database Design Maryam Ramezani

 Key-Value Store
 Document Based
 Column Based
 Graph Based
 Vector Based

33

CE384: Database Design Maryam Ramezani 34

 (k,v)
 v is JSON or XML

CE384: Database Design Maryam Ramezani 35

Advantages
 High speed
 Highly scalable
 Simple data model
 Supports horizontal distribution

Disadvantages
 Many data structures cannot be modeled with key-value pairs
 Not suitable for complex queries with aggregation operators
 If data linking (joins) is needed, it must be handled at the

application level

CE384: Database Design Maryam Ramezani 36

CE384: Database Design Maryam Ramezani 37

	Default Section
	Slide 1
	Slide 2: Introduction
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Big Data
	Slide 8: What is NoSQL?
	Slide 9
	Slide 10: Distributed Key-Value Data Stores
	Slide 11: Typical NoSQL API
	Slide 12: Flexible Data Model
	Slide 13: PNUTS Data Storage Architecture
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Common Advantages
	Slide 18
	Slide 19: Should I be using NoSQL Databases?
	Slide 20: Data Partitioning Algorithms
	Slide 21: Data Partitioning
	Slide 22: Simple hash-based partitioning
	Slide 23: Range based partitioning
	Slide 24: Consistent Hashing
	Slide 25: Server lookup
	Slide 26: Server lookup
	Slide 27: Add a Server
	Slide 28: Remove a Server
	Slide 29: Problem and Solution
	Slide 30: Virtual Nodes
	Slide 31: Data Replication
	Slide 32: Benefits of consistent hashing
	Slide 33: NoSQL Types
	Slide 34: NoSQL DB
	Slide 35: Key-Value
	Slide 36: Key-Value
	Slide 37: Document Based

